
Redundant States in Sequential Circuits

Removal of redundant states is important because

• Cost:  the number of memory elements is directly related 
to the number of states

• Complexity:  the more states the circuit contains, the 
more complex the design and implementation becomes

• Aids failure analysis:  diagnostic routines are often 
predicated on the assumption that no redundant states 
exist



Equivalent States

 Let Si and Sj be states of a completely specified sequential 
circuit.  Let Sk and Sl be the next states of Si and Sj, 
respectively for input Ip.

Si and Sj are equivalent if and only if for every possible Ip

the following conditions are satisfied:
• the outputs produced by Si and Sj are the same;

• the next states Sk and Sl are equivalent.

• States Si and Sj are equivalent and are combined to one state 
by pointing all arrows that go to Sj to state Si and removing Sj

with its all arrows
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Equivalence and Partitions

 Equivalence relation:  let R be a relation on a set S.  R is an 
equivalence relation on S if and only if it is reflexive, 
symmetric, and transitive.  

 An equivalence relation on a set partitions the set into 
disjoint equivalence classes.

 A partition consists of one or more blocks, where each block 
comprises a subset of states that may be equivalent, but the 
states in a given block are definitely not equivalent to the 
states in the other blocks.

 The partitioning method initially assumes that all states are 
equivalent and then proceeds to determine those state 
which are not equivalent by analyzing each states k-
successors.



Finding Equivalent States By Inspection
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Partitioning Minimization Procedure

 PROCEDURE:
1) all states belong to the initial partition  p1

2) p1 is partitioned in blocks such that the states in 
each block generate the same output.

3) continue to perform new partitions by testing 
whether the k-successors of the states in each 
block are contained in one block. Those states 
whose  k-successors are in different blocks 
cannot be in one block.

4) prcedure ends when a new partition is the same 
as the previous partition



Finding Equivalent States by Partitioning



Implication Table

 The checking of each pair of states for possible equivalence in a 
table with a large number of states can be done systematically 
on an Implication Table.

 The Implication Table is a chart that consists of squares, one 
for every possible pair of states.

a       b       c

b

c

d

c,d

a, b

(c,d)(a,b) (c,d) && (a,b)

both pairs are equivalent



Implication Table
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• the equivalent states
 (a,b), (d,e), (d,g), (e,g)

• the reduced states
 (a,b), (c), (d,e,g), (f)

• the state table:



Incompletely specified circuits

 Finding compatible states by inspection

0
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Merging of the Flow Table

 The state table may be incompletely specified: combinations of 
inputs or input sequences may never occur (Some next states 
and outputs are don’t care).

 Multi-input primitive flow tables are always incompletely 
specified
• Several synchronous circuits also have this property

 Incompletely specified states are not “equivalent” as in 
completely specified circuits.  Instead, we are going to find 
compatible states



Equivalent and Compatible States

 completely specified state table  equivalence

If a and b are equivalent, and b and c are 
equivalent then also a and c are equivalent:

(a,b), (b, c) (a, c)

 uncompletely specified state table  compatibility

If a and b are compatible, and b and c are 
compatible not necessarily a and c are compatible:

 Compatibility relation:  let R be a relation on a set 
S.  R is a compatibility relation on S if and only if 
it is reflexive and symmetric.  A compatibility 
relation on a set partitions the set into 
compatibility classes.  They are typically not 
disjoint.

a       b      

b

c







Incompletely specified circuits: partition method

 The partitioning minimization procedure which was applied to 
completely specified state tables can also be applied to 
incompletely specified state tables. 

 To perform the partitioning process, we can assume that the 
unspecified outputs have a specific value.

 The partitioning method is equally applicable to Mealy type 
FSMs in the same way as for Moore-type FSMs. 



Compatible Pairs (DG sequential circuit)

 Implication tables are used to find compatible 
states.
• We can adjust the dashes to fit any desired condition.

• Must have no conflict in the output values to be merged.

c,0

d,0a,0

f,1b,1

e,1



Merger diagrams

 States are represented as dot in a 
circle

 Lines connect states couples 
compatible

 Maximal sets can be identified as 
those sets in which every states is 
connected to every other state by a 
line segment
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Maximal sets with 3,4,5 and 6 states



Maximal Compatibles
 Maximal Compatibles: a group of compatibles that contains 

all the possible combinations of compatible states.

 n-state compatible  n-sided fully connected polygon.
• All its diagonals connected.

• Not all maximal compatibles are necessary

• An isolated dot: a state that is not compatible to any other 
state

• a line: a compatible pair

• a triangle: a compatible 
with three states

• an n-state compatible: an 
n-sided polygon with all 
its diagonals connected

DG sequential circuit



Closed Covering Condition
 The condition that must be satisfied is that the set of chosen 

compatibles must:

• Cover all states.

• Be closed: the closure condition is satisfied if there are no implied 
states or if the implied states are included within a set

 In the example of the DG sequential circuit, the maximal 
compatibles are:

(a, b) (a, c, d), (b , e , f)

 If we remove (a, b), we get a set of two compatibles: 

(a, c, d), (b, e , f):
• All the six states are included in this set.

• There are no implied states for (a,c); (a,d);(c,d);(b,e);(b,f) and 
(e,f) [you can check the implication table] . The closer condition is 
satisfied

The original primitive flow table can be merged into two rows, 
one for each of the compatibles.



Closed Covering Condition (Example)
• From the aside implication table, we have the following 

compatible: pairs:  (a, b) (a , d) (b, c) (c , d) (c , e) (d , e)
• From the merger diagram, we determine the maximal 

compatibles: (a , b) (a , d) (b , c) (c , d , e)

• If we choose the two compatibles: (a , b) (c, d, e)

• All the 5 states are included in this set.

• The implied states for (a, b) are (b, c). But (b, c) are 
not include in the chosen set. This set is not closed. 

• A set of compatibles that will satisfy the closed 
covering condition is (a, d) (b, c) (c, d, e) 

• Note that: the same state can be repeated more than 
once 



Minimization of campatible classes

Select a set of compatibility classes so that the 
following conditions are satisfied:

 Completeness: all states of the original machine must be 
covered

 Consistency:  the chosen set of compatibility classes must be 
closed

 Minimality:  the smallest number of compatibility classes is 
used



Bounding the number of states

 Unfortunately the process of selecting the set of 
compatibility classes that meets the three conditions must 
be done by trial and error.

 Let U be the upper bound on the number of states needed 
in the minimized circuit.

Then U = minimum (NSMC, NSOC)
• where NSMC = the number of sets of maximal compatibles

• and NSOC = the number of states in the original circuit

 Let L be the lower bound on the number of states needed in 
the minimized circuit

Then L = maximum(NSMI1, NSMI2,…, NSMIi)
• where NSMIi = the number of states in the ith group of the set 

of maximal incompatibles of the original circuit.



State Reduction Algorithm

 Step 1 -- find the maximal compatibles

 Step 2 -- find the maximal incompatibles

 Step 3 -- Find the upper and lower bounds on the number of 
states needed

 Step 4 -- Find a set of compatibility classes that is 
complete, consistent, and minimal

 Step 5 -- Produce the minimum state table



Example -- State reduction problem

Closure table Reduced state table

Compatibles pairs

Incompatibles pairs

Maximum 

Compatibles

(ABD)(ACD)(ACE)

U=3

Maximum 

Incompatibles

(BE)(BC)(ED)

L=2



Another state table reduction problem

Compatibles pairs

Incompatibles pairs

Closure table

Reduced state table

Maximum 

Compatibles

(ABD)(BC)(E)(F)

U=4

Maximum 

Incompatibles

(ACEF)(CDEF)

(BEF)

L=4

Note that the resultant state 
table has considerable flexibility. 

This property will serve to 
simplify the hardware realization



Yet another state reduction problem

Maximum Compatibles Maximum Incompatibles

Closure table

Maximum 
Compatible

Reduced 

state table

Closure table

Maximum 

Compatibles

(ABC)(ACD)(ADE)

U=3

Maximum 

Incompatibles

(BD)(BE)(CE)

L=2



Generating Maximal Compatibles and Incompatibles

Maximum Compatibles

(AEGH)(BCG)(CDG)

(CEG)(CFG)

U=5

Maximum

Incompatibles

(ABDF)(AC)(BDEF)

(CH)(BDFH)

L=4



Reduced state table

 Closure table: treat  maximum compatibles as states and  
find their sets of next states

 All maximal compatibles are used as states of the reduced 
machine. Hence, the final five states are:

Closure table Reduced state table



State Assignment

 Primary Objective of Synchronous Networks
• Simplification of Logic and Improvement of Performance

• Improvement of Testability

• Minimization of Power Consumption.

 Primary Objective of Asynchronous Networks
• Prevention of Critical Races

• Simplification of Logic



Race-Free State Assignment

 Objective: choose a proper binary state assignment to prevent 
critical races

 Only one variable can change at any given time when a state 
transition occurs

 States between which transitions occur will be given adjacent 
assignments
• Two binary values are said to be adjacent if they differ in only one 

variable

 To ensure that a transition table has no critical races, every 
possible state transition should be checked
• A tedious work when the flow table is large

• Only 3-row and 4-row examples are demonstrated



3‐Row Flow‐Table Example
 Three states require two binary variables (in the flow table 

outputs are omitted for simplicity)

 Representation by a transition diagram 

 a and c are not adjacent in such an assignment!
• Impossible to make all states adjacent if only 3 states are used



3‐Row Flow‐Table Example
 A race-free assignment can be obtained if we add an extra row 

to the flow table

 Only provide a race-free transition between the stable states

 The transition from a to c must now go through d

00  10  11 (no race condition)

 Note that no stable state can be introduced in row d



Shared-Row Method

 The shared row is not assigned to any specific 
stable state

 Used to convert a critical race into a cycle that 
goes through adjacent transitions between two 
stable states

 May require more extra rows



State adjacencies for assignments



Unique State Assignments



4‐Row Flow‐Table Example
 A flow table with 4 states requires an 

assignment of two state variables.

 If there were no transitions in the 
diagonal direction (from a to c or from b 
to d), it would be possible to find 
adjacent assignment for the remaining 4 
transitions.

 In general in order to satisfy the 
adjacency requirement, at least 3 binary 
variables are needed.



4‐Row Flow‐Table Example
• The following state assignment map is 

suitable for any table.
• a, b, c, and d are the original states.

• e, f, and g are extra states.

• States placed in adjacent squares in the 
map will have adjacent assignments

• Please note that state variable order 
in figures is y3y1y2



4‐Row Flow‐Table Example
 To produce cycles:

• The transition from a to d must be directed through the extra state e

• The transition from c to a must be directed through the extra state g

• The transition from d to c must be directed through the extra state f



Multiple Row Method

 Multiple-row method is easier. May not as 
efficient as in above shared-row method

 Each stable state is duplicated with 
exactly the same output. Behaviors are 
still the same

 While choosing the next states, choose 
the adjacent one among the two 
possibilities



Don’t Care Assignment

 Needed Transitions

 All possible transitions between pairs of rows are needed

 Fill in don’t care to eliminate races

 Direct transitions for columns 01, 10 (No don’t care)

a b

d c



Don’t Care Assignment

 Needed Transitions

 All possible transitions between pairs of rows are needed

 Fill in don’t care to eliminate races

 Direct transitions for columns 01, 10 (No don’t care)

In column 00: da changed to dca.

In column 11: bc changed to bac.

a b

d c



State Assignment

 Universal Assignment for 8-Row Tables
• Require 4 state variables.

• Slow due to several successive changes 

needed.

 Universal Assignment as the Last 
Resort.
• Try to use smaller number of state 

variables.

• Try to take advantage of don’t care.

• Allow several state variables change 
simultaneously.
 Make all races noncritical.

 Faster.



Extra raw flow table



Alternative solution: transition changes



Summary

 Shared row method

 Multiple row method

 Don’t care assignment

 Universal states assignment

 Transition changes

 Other approaches

1 VP Nelson et al., not presented here



Hazards
 A timing problem arises due to gate and wiring delays

 Hazards: Unwanted switching transients at the network output, caused 
by input changes and due to different paths through the network from 
input to output that may have different propagation delays

 Hazards occur in combinational and asynchronous circuits:
• In combination circuits, they may cause a temporarily false output 

value.

• In asynchronous circuits, they may result in a transition to a wrong 
stable state.

Asynchronous Sequential Circuits:
• Hyphothesis:

 Operated in fundamental mode with only one input changing at any time

• Objectives:
 Free of critical races

 Free of hazards



Hazards in combinational circuits

 Static 1-hazard (sum of products)

• The remedy

 the circuit moves from one product

term to another

 additional redundant gate



Hazards in sequential circuits

An asynchronous example:

111 110
111 010



Remove Hazards with Latches
 The implementation of the asynchronous circuits with SR latches can 

remove static hazards

 SR Latch (NOR type)

• Allow 1-hazard (a momentary 0 has no effect)

• The network realizing S and R must be free of 0-hazards.

 S’R’ Latch (NAND type)

• Allow 0-hazard (a momentary 1 has no effect)

• The network realizing S and R must be free of 1-hazards.

 Note that a sum-of-products implementation is 
automatically free of static 0-hazards and a product-of-
sums implementation is free of static 1-hazards. 



Hazard-Free Realization

 S-R Latch (NOR type):

S-R Flip-Flop Driven by Equivalent Network  Structure

2-level AND-OR Networks                                 (in general faster)



Example
Consider a SR‐latch with the following 

Boolean functions for S and R

S = AB + CD

R = A’C’

If we want to use a NAND latch we 
must complement the value for S and R

The Boolean function for output is

Q = (Q’S)’ = [Q’ (AB)’(CD)’]’

The output is generated with two levels 
of NAND gates:

A product-of-sums implementation is 
automatically free of static 1-hazards. 

S = (AB + CD)’ =(AB)’(CD)’

R = (A’C’)’

If output Q is equal to 1, then Q′ is equal to 0. If two of the three inputs go 
momentarily to 1, the NAND gate associated with output Q will remain at 1 
because Q′ is maintained at 0.



Essential Hazards
Besides static and dynamic hazards, another type of hazard 

in asynchronous circuits is called: Essential Hazard

 It is caused by unequal delays along two or more paths that 
originate from the same input

Cannot be corrected by adding redundant gates

Can only be corrected by adjusting the amount of delay in 
the affected path
• Each feedback path should be examined carefully !!



Design Example

Recommended Design Procedure:

1. State the design specifications.

2. Derive a Primitive Flow Table.

3. Reduce the Flow Table by merging rows.

4. Make a race‐free binary state assignment.

5. Obtain the transition table and output map.

6. Obtain the logic diagram using SR latches.



Design Example

1) Design Specifications:

The objective is to design a negative‐edge‐triggered T 
flip‐flop. The circuit has two inputs T (toggle) and C (clock) 
and one output Q. The output state is complemented if T=1 
and the clock changes from 1 to 0 (negative‐edge‐triggering). 
Otherwise, under all input condition, the output remains 
unchanged.
• A Negative-Edge-Triggered T FF

• Two inputs : T, C

• Flip-Flop changes state when T = 1 and C changes from 1 to 0

• Q remains constant under all other conditions

• T and C do not change simultaneously



Design Example

2) Primitive Flow Table

e     d  a   b   g    h     g       b    c  d      

T

C

Q

e     f   a  f  a   b    c   h  c  d  e      f



Design Example
3) Merging of the Flow Table

Implication Table Merger Diagram

Compatible pairs: The maximal compatibles pairs are: 

U=4



Maximal Incompatibles

a

c

bh

g

f

e

d

L=4



Design Example

 In this particular example, the minimal collection of 
compatibles is also the maximal compatibles set that satisfy
also the closed condition:

(a, f) (b, g, h) (c, h) (d, e, f)



Design Example

4) State Assignment and Transition Table

 No diagonal lines in the transition diagram: No need to add 
extra states (race-free binary state assignment!)



Design Example

5) Logic Diagram


